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A theoretical model is presented that describes the interaction of frequency components in arbitrary
pulsed elastic waves during one-dimensional propagation in an infinite medium with extreme
nonlinear response. The model is based on one-dimensional Green’s function theory in combination
with a perturbation method, as has been developed for a general source function by McCall
Geophys. Re999 (B2), 2591-260QFeb. 1994]. A polynomial expansion of the equation of state

is used in which four orders of nonlinearity in the moduli are accounted for. The nonlinear wave
equation is solved for the displacement field at distaxndeom a symmetric “breathing” source

with arbitrary Fourier spectrum imbedded in an infinite medium. The perturbation expression
corresponds to a higher-order equivalent of the Burgers’ equation solution for velocity fields in
solids. The solution is implemented numerically in an iterative procedure which allows one to
include an arbitrary attenuation function. Energy conservation is investigated in the absence of
(linean attenuation, and the notion of a hybriinear and nonlineardissipation is illustrated.
Examples are provided showing the effect of each term in the perturbation solution on the spectral
content of the waveform. Finally, the possibility of creating a parametric array for seismic
exploration is briefly considered from a theoretical point of view. 1@96 Acoustical Society of
America.

PACS numbers: 43.25.Dc

INTRODUCTION intense algebra again, we assume the equation of state can be

approximated by a higher-order power law expansion of
It is well established that the elastic nonlinear responsetress as a function of strain.

in some materials is extremely large. Rock in particular dis-

plays an enormous nonlinear response and this has been N

documented in many studiés? Elastic nonlinearity causes - 1raditional approach

frequency components to mix and energy to be transferred In this paper we first focus on the effects of elastic non-

from fundamental frequencies to sum and difference fredinearity, and include attenuation in a later stage. Using the

quencies along the wave propagation path well away from ahagrangian coordinate and timet, Thurston and Shapité

acoustic or elastic wave source. Traditionally, a perturbatior@xpressed the differential equation of motion for single mode

expansion of the equation of state including one nonlineafOUnd wave propagation in a nonlinear one-dimensional in-

term has been incorporated into the wave equation to gdinite solid in terms of particle displacementand strain

scribe this behaviot® This is the approach of nonlinear e=dulox as
acoustics where nonlinear response is generally small rela- J%u ou au\? d%u
tive to materials such as ro€K.However, our work and the Po iz = Mo 1+5 &+ g ax) T axE @

work of others has shown that the elementary traditional . . .
: . : ._Here py denotes the unstrained density specific for the me-
theory does not describe observations well, or in some in-,

t t at ?'90 .. th ft t d|um, IBZM3/M2 and 5:M4/M2, Wlth Mz, M3, and M4
stances, not at afl.- Lur group IS in the process ot testing being, respectively, linear combinations of second-order

several revised or entirely new theoretical approaches. Thgagtic constants, second- and third-order constants, and
two primary approaches ar€l) expanding the equation of ggcong-, third-, and fourth-order constants in the direction of
state to higher order than is traditionally done, &dappli-  propagation. Equatioft) clearly illustrates the hypothesis of
cation of a discontinuous equation of state. The second agy nonlinear modulus-strain relatidior velocity-strain rela-
proach is described in several pap&r¥ The first approach tion since the linear velocity is commonly defined as
is the topic of this paper. Back in 1975, Tierstbpresented = VM, /pg) expressed as a power serieseirrhurston and
the nonlinear constitutive equations for an isotropic purelyShapiro applied a Fourier series expansion of the particle
elastic solid containing terms up to cubic in the small me-velocity in the simple wave region to obtain an expression
chanical displacement gradients. Rather than going over thier the particle displacement at distancex assuming an
initially pure sinusoidal wave. More recently McCallob-
dAlso Post-Doctoral Fellow of the Belgian Foundation for Scientific Re- tained the same theoretical result using a 1-D power law

search, K.U. Leuven Campus Kortrijk, Interdisciplinary Research Center €XPansion of S_treséﬂ') VerSUS_Stram and solving followmg
E. Sabbelaan 53, B-8500 Kortrijk, Belgium. nonlinear elastic wave equation by use of Green'’s function
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theory in combination with perturbation methods terials. Measured values for the first nonlinearity paramgter

range from 16to 10* whereas typical values between 3 and
U do

po === —+S(x,1), (2a 15 are observed for most crystalline solids. The observed

o d values forp and the large amplitudes of higher harmonics

with observed in rock!*®suggest that higher-order elastic coef-

ficients may play an important role. Therefore, if a power
o(€)=Mye(1+ B e+ 5 € +-+) law expansion of stress versus strain is a valid assumption, at

Ju Ju Ju\ 2 least thed term must be taken into consideration in the de-

=M, — [1+B8' —+ 5/(_ 4. (2b)  scription of the stress-strain relation for these materials. In

24 24 24 this paper we carry out the perturbation expansion including

and S(x,t) being the driver. four orders of nonlinearity in the equation of state. In a com-
The difference between Eql) and (2) is the identifi- ~ Panion paper(Part I)) we compare theoretical to observed
cation of 3 as 28’ and § as 35'. The advantage of McCall's results.
procedure using Green’s function theory is that the solution ~ Creating a single frequency plane wave source in an
can be written in semianalytical form for any arbitrary source€Xperiment is not necessarily straightforward. In order to
function S(x,t) 134 minimize diffraction effects our group has performed experi-
For most solids the solution of the above equations lim-ments on cylindrical cores using a drive transducer of iden-
ited to the first nonlinear term is sufficient to describe theirtical diameter as the core. Pure Young's mode propagation at
nonlinear response, i.e., only the term nis needed. The @ single frequency is sought. However, source effects may
value of the first non”nearity parameter can be experimeniﬂtrOduce harmonic distortion of the initial signal. In addi-
tally obtained from a measurement of the amplitégef the  tion, it is known that the Young's mode in a bar requires
second harmonic displaceméaty) generated at a distange ~ Some time(or equivalently, some distanceo fully develop

from a pure tondsingle frequencysource signal its characteristics. Within the distance in which the mode is
5 established in highly nonlinear materials like rock, it may

B 8AxCo 3) develop a rich harmonic spectrum. In order to account for

B Azlw X’ multiple frequency components in the source we applied the

) ) ) Green'’s function procedure, developed by McCall, to deter-
wherew is the angular frequency am, is the amplitude of  ine the waveform expression at distancérom a source
the fundamental frequency. consisting of an arbitrary pulsed source spectrum. This ex-

In some materials it appears that higher-order terms, asqion corresponds to a higher-order equivalent of the Bur-
must be employed in order to describe the complete nonlin-

ear response including higher-order harmonics. Some cerarﬁers’ equation solution for velocity fields in solids. It has
. : 01 9T ) onceptual clarity and is easy to implement numerically.
ics can be described in this manf@ri® Based on perturba- b Y y P y

. . . . _ . . Analysis of the harmonic content generated along the wave
tion theory, including higher-order nonlinearify term) in Y g g

th i tion i i hen th lit propagation path in the case of a symmetrical source func-
€ nonlinear equation IS not necessary when the ampli Udl‘"Fon, and the influence of each term in the power law expan-
A of the third harmonid3w) approximately satisfies

sion of the stress-strain relation is illustrated.
,82A§w4x2 Because the general expression is obtained using pertur-
T3k (4  bation theory, it is restricted in its analytical form to small

0 distances from the source. For large distances, the distortion
The presence of third harmonic amplitudes for which @y. must be calculated in an iterative manner. This will be shown
is not satisfied may mean that fourth- and perhaps eveim more detail. Numerical examples will be provided for dif-
higher-order elastic coefficients must be taken into accounferent numbers of iteration steps showing the convergence of
or that an alternative model with a discontinuous state relathe distorted frequency spectrum as the iteration distance be-
tion must be considered as mentioned above. A recent studyomes small. From this procedure it will also be shown that
suggests that non-negligible fourth-order elastic coefficientsich harmonic spectra can be predicted even if only a mini-
can model the extreme nonlinear behavior in the case of PZmum number of nonlinearity parameters are taken into ac-
ceramics>~*6Na and Breazealéreported g3 value of 1500 count. In addition, the procedure allows us to include any
for PZT ceramics at the Curie temperature and their meadissipation function accounting for linear attenuation at each
sured third harmonic amplitudes at room temperature weréeration step. Finally, the iteration procedure provides a
orders of magnitude larger than predicted by E§. The  means of accounting for energy conservation in the absence
same approach may also model the large nonlinear responeé attenuation. Because nonlinear elasticity implies that en-
in Earth material$*"8Earth materials are an extreme ex- ergy is transferred between frequency components, we also
ample of disordered media in which the effective moduliinvestigate the notion of “elastically nonlinear” attenuation
change dramatically as a function of stress due to the presrersus “elastically linear” attenuation.
ence of compliant features such as microcracks and grain The theoretical framework has a number of potential
boundaries. Elastic resonafeand static stress-strain applications. Apart from a pure characterization and classifi-
experiments?° suggest that the ratio of third-order elastic cation of the degree of elastic nonlinearity for both normal
constants to second-order elastic constants in rocks is sevei@hd disordered solids, we are interested in the sensitivity of
orders of magnitude higher than in the case of ordinary manonlinear contributions along the propagation path as a way

Ag*
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of interrogating the compliant nature of the material, such ag3’, &, 7', and¢’ are the nonlinear parameters. We apply the
measurement of consolidation and saturation as well as fqerime notation in the stress-strain expansion coefficients in
symptoms of fatigue or damage. In the case of seismic eventwder to make the distinction between the more common
in the earth, such as explosions and earthquakes, we sestodulus-strain relation of Thurston and Shapiro. Geophysi-
corrections to the spectrum of seismic waves received atists prefer to think in terms of stress whereas velocity is the
large distances from the source for which we believe thatore favorable terminology in acoustics.

energy is transferred about the spectrum as a function of By use of the Green’s function

propagation distancl:?* Also the construction of a paramet-
ric array in analogy with underwater sound exploratfor®

is of interest to seismic surveys for directed transmission
over a long path length.

ei(w/c0)|x—x'\

G(X,X’,w)Z—m, (6)

for an infinite medium associated with the linear problem,
. THEORY McCall showed that the displacement spectrum at a distance
, x from the source can be expressed in semianalytical integral

The following theoretical discussion is based on Green Sorm Applying the same method to E@) the Fourier trans-
function theory in combination with perturbation analysis asform.of the displacement field is given by

elaborated on in detail by McCdif. The one-dimensional
nonlinear equation of motion for the displacement field can  y(x, w)=u@(x,w)+uP(x, ®) +u@(x,w)+u®(x, »)
be obtained by representing str€ss as a polynomial ex-

pansion in strain(e). The present study takes into account +u(x,w), (7)
four orders of nonlinearity in this expansion. The resulting h

one-dimensional nonlinear equation in Lagrangian coordi¥' €€
natex and timet then takes the form

+oo _
15u d[au ,ou - fou\? o [au)® U(O)(X’w):Jﬂc dx” G(xX',w)S(x', @), ®3
2 ax a—x(“ﬁ ax "0 a_x) o a) .
with
[ou)? )
+¢ (a_x) <o [+ S(x,1), (5 Qs,w)=f+ dt S(x.t)e, (8b)

in which u is the particle displacement, is the linear ve-
locity, S(x,t) is the expression for the source function, andandu(™ can be calculated by successive approximations, i.e.,

u®(x w)zﬂ’jﬂdx’ G(x,x’ w)f+m do” 9. | (x",0") e X', o—w") (80
' —w o —w 2@ OX' | ox’ ' ax’ ' '
u@(x w)=2[3’f+ocdx’ G(x,x’ w)fm do” 7. au_“)) (x",@") u X', wo—o')
' —x e — 2 X' | X' ' ax’ ’
e +e (+= do' do” d [Ju® u® u®
+5,j,x dx’ G(X’X,’w)J,w wa o o I W(x’,w’) o (X", 0") o X' o—w'—0")|,
(8d)
u®(x w)=2B’J’+xdx’ G(x,x’ w)fm do” 9. au—(O)(x' o) u X', o—w')
' — Y — 2 X' | X' ’ ax’ ’
+o0 +» do’ 9 [ou? ou®
+ﬂ’£w dx’ G(X'X,’w)ﬁw o o W(X,’w,) o X' o—w")
oo +o (+2 do’ do” d [Ju® ou'® autv
-f—35'f_OC dx’ G(X,X’,w)f_OC f_w S 27 o W(X',w') X (x",0") X X', 0o—w'—o")
+o0 +o (+2 (+2 ' do” do” ¢ [Ju'® au® au®
+77’J7w dx’ G(X’X”w)J:w fo fo o om 2m o W(x’,w’) o (x",0") o (x",0")
ou®
XW X' o-—w'—0"—")|, (8¢
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and

@ +o dw' 9 [ou® au®
U (x,w) 2,6’f dx" G(x,x’ w)J' o I W(X yw')- o X' o—w")
+e dw’ 9 [ou® @
+28' f dx" G(x,x’ a))f o o W(x y'): X X' o—w")
+35'f d G J J+w dw dw (9 aU(O) ! ! aU(O) ! " ﬂU(Z) ! ! "
X" G(X,x", @) o 2w o ( o Xhe") (X', o—o'—o")
+35,f d G f f+m dw dw (9 é’u a (1) ! 4 aU(l) ’ ’ ”n
X" G(X,x",w) 5 o o | o (X w) — (X", 0")- X' o—o'—o")
2 ,r 4 G f f Foo do’ do” do” d [u'® u®
T X GXX,0) 27 27 2w ox' | ox (Xw)ﬁx' (X', ")
&u(o)
’ n__..m
X X (X" ")
+ f dx’ G f f f f*“’ do’ do” do” do® ¢ [ou® o ou©® o,
¢ X GXX,0) 27 2@ 2w 2w X | ox' X', @) ox’ (X', @)
ou® ou® ou®
X ENG (X", ") — (x’ w<4)) — (X, o—0' —0"—"— o). (8f)
|
We are particularly interested in the response of the displace- a 5(x)]
ment field at some distance from a source that consists of an S(X,@)=—2 g Zﬂnzm U (@ —Nay) 9

arbitrary train of pulsed elastic waves. This will allow us to "
n which U,=[U_,]* is a complex number describing the
ignore the near-field effects, and to use the waveform at ané{mplltudeA and phases, of the nth harmonic displace-
n

position outside the near field as a source input in our modelyent component at=0, i.e.,U, = — (i/2)A,e %, and5(x)
Because most sources emit some harmonic energy, this ag-the delta distribution functlon.
proach is also very useful for analyzing the effects of har-  Introducing the source functiofEq. (9)] into Eqg. (8a)

monic source distortion on nonlinear wave propagation. ~ and working through the immense job of analytically calcu-
Conforming with our ongoing pulse experiments, we lating the integrals 8a, c—f we find a general expression de-

consider the case of a “breathing” mode source where tha scribing the harmonic distortion of a pulsed signal propa-

) gated over a distance in an elastic nonlinear medium. In
source expands symmetrically about its vertical d%i6., torms  of the particle  velocity V,=—inwyU
n n

u(=x,t)=—u(x,t)]. The Fourier transform of the source = —n(wy/2)A, exp[i ¢,], the perturbation solution for each
function in this case can be written as follows: frequency component is given by

+ oo
Vn(Xo+X):Vn(Xo)eXF{ 20¢, > Ix| +Iw0n| K 2 Vin-1,(Xo) Vi, (Xo)Wa(n, 1)
1=
+ o
oo g lE Vioi,-1,(X0) V1, (X0) V) (X0) Wa(n, 1 1,1)
2——0(3
+
X
—ieon o - |.2 Vit -1,-1,X0) V1, (X0) V1, (X0) Vi (X0) Wa(n, 11,1 2,15)
X =
+won E - Vi, -1,-15-1,(X0) V1, (X0) V1 (X0) V1 (X0) Vi, (X0) Wa(N, 1 1,1 2,13, 14), (10
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wheren, 14, I,, |5, andl, refer to a particular frequency the distortion for each frequency component over a propaga-
component and to summations indices. Note Watdenotes tion distancex using Eq.(10), and finally converts distorted
the interaction weighting function for thé&+1)-fold fre-  velocity back to displacement. We define the order of ap-
guency component interactions. For conciseness we includsroximation of the perturbation technique as the number of
only the explicit expressions for the functiod¢, andW,: nonlinear terms taken into account in the calculation of Eq.
/ (7). Note that themth-order approximation takes into ac-
X[, (119  count no more tham orders of nonlinearity, for instance, a
second order approximation technique reflects influences of
B’ and &' provided these have nonzero values.
|X| In the following we discuss{1) the implementation of
the perturbation solution using an iterative technique and the
(141w B2 ) effects of the iterations on the solutiof2) the influence of
— & [x ] (11b source distortion{3) the effects of the level of approxima-

o ) . tion used in the perturbation model and the influence of the
The weighting functionsV; and W, (and any higher order g jinearity parameterss) the introduction of attenuation

interaction weighting functioncan be calculated using the 5. the notion of a local hybri@ value;(5) the conservation
general formgla described in tr_le App_end|>_<. Their leading energy requirement6) and some applications. The pa-
terms start with terms that are linear with distance and progameters used as input in the theoretical model are listed in

portional t_07l and &', respectively. _ . each figure caption.
Equation(10) corresponds to a higher order equivalent

of the Burgers’ equation solution for particle velocity fields A. Implementation of the perturbation solution using
in solids?*~2® The five parts in this equation correspond to &n iterative technique

the five terms for each frequency component of the particle  Because the general expression is obtained using pertur-
velocity distortion over a distance[equivalent to Eq(7)].  pation theory, it is restricted in its analytical form to small
The first term is the unperturbed frequency component thadistances< from the source. For large distancesthe dis-
can be modified by dissipation, introduced ina@hhocman-  tortion must be calculated by iterative procedtfr&Rather
ner t_)ecause there is no attenuation present in the considergg calculating the distortion directly at a large propagation
nonlinear wave equation. Here we used the common expayistancel, we divide the total distanck into N intervals,
nential decaying function in whiclQ, is a frequency- each of lengttx=L/N. The calculated signal at the begin-
independent measure of the linear attenuation. All otheping of each interval is used as the source for the computa-
terms are identified with elastic nonlinear mteracnons betion of the waveform and spectrum propagating over the next
tween frequenqy components and can be considered as CQfizeryal L /N. Figure 1 illustrates the amplitudes of the fun-
rections to the Illnear wave propagatlon.theory.'Generally thglamental and harmonics out ta@s a function of the num-
Burger's equation accounts only for interactions betweerer of jterations using a second-order perturbation technique
two frequency componentgcorresponding to the second ¢4 5 single-frequency drive signal at 15 kHz. Figur@)l
term in Eq.(7)], whereas the use of EGL0) models direct  cjear1y shows the convergence of the iteration procedure as
energy mixing between up to five harmonics over the sameye nymper of stepll increases from 1 to 100. This conver-
distance. gence characterizes the stability of the perturbation solution.
The bottom portion in Fig. (B) illustrates magnified versions
Il. EXAMPLES AND DISCUSSION of the asymptotic behavior for the first four frequency com-
The range of parameters and dimensions used in theonents. Note that the fundamental amplitude grows as a
illustrations in this paper is inspired by experiments on rockfunction of the number of iterations whereas all harmonics
samples performed by our group. Typically, Young’s modedecrease in amplitude for larghir This is because the itera-
velocity ranges between 1800 and 2600 m/s, fundamentdive calculation over smaller and smaller steps reduces the
frequencies are 5 to 50 kHz, displacement amplitudes rangeonlinear correction effects over the total distance. A single
from 10°° to 10 ® m (strains of 2.410 8 to 6.6x10°°), iteration causes too much energy to be transferred to the
distances extend to 2.0 m and the linear attenuation paranfarmonics resulting in an exaggerated correction for the fun-
eterQ, varies from 10 to 200. The first and second nonlin-damental source frequency component and generation of har-
earity parameter§3’ and 8’) have been found to range any- monics that is too large. The more intervals we consider, the
where between 10 and 46or 8’ and between f0and 10  more stable the solution will be.
for & based on experimental observations. No experimental ~ Figure Xb) provides another view on the harmonic am-
evidence has been considered concerning the importance aptitude spectra after 1, 2, and 100 iterations. In the case of a
the values of the higher-order nonlinear parametgrand  single iteration, we calculate the distortion at a distance of 1
£ . However, in some cases large harmonics can be observéul from the source. Because a second-order perturbation ap-
out to at least the tenth harmonic,d0 proximation is used only the second and third harmonic am-
In almost all illustrations that will be shown, displace- plitudes have nonzero amplitudes which are in this case due
ment of onglor more frequency compone(s is used as the to two and threefold interactions of the source frequency
dependent variable. The numerical implementation first conwith itself. Using two iterations, the distorted spectrum is
verts initial displacement values to velocity, then calculatedirst calculated at 50 cm from the source resulting in a spec-

Wi(n,l))=-—=
=5

n

2n+|1+I2)

i BIZ
Wz(n,ll,lz)zz’g [[5,_7
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tions to 100(equivalent to calculations every 1 grantil a

iy i stable solution is reached. In general, by reducing the step-
g 107 E ggtg; size and iden_tifying thg qutput of one iterat.ion as the input
= 2 —|-@ 75kHz for the next iteration, it is possible to retrieve a rich and
2 10 [ — . aaa _O' 9°fo ] stable spectrum with harmonics of much higher order than
= . ST T the approximation level of the perturbation model considered
EL 10 in the calculations. This is a great advantage of the method.
< 10°
E 9
& 10 B. Influence of source distortion
g 10" For small distancegonly one iteratioh and a single-
& 101 OOy frequency input, the analytical form of the solution given by
A 1 10 100 Eq. (3) suggests easily verifiable relations for experimental
Number of iterations observations of the second harmomig¢ as a function of
= initial amplitude @A,xA3), frequency(A,*w?), and distance
L7 S (A,xx).B17 At larger distances, these relationships alter
‘ézzz 127 . 30 kHz somewhat and become more complicated than simple power
757:54 o 610° law dependencies.
;7'53 07 510 Similarly, modification of these predictions occur when
- a transducer generated second harmonic component is super-
2 751107 an0* posed on the fundamental frequency signal at the source. An
g 75107 310* example is given in Fig. 2 where the predicted dependence of
! 10 10 ! w0 10 A, at some distance from a pure source is compared with the
E 010° 01070 case of a combined fundamental-second harmonic source
g s10° 8107 where the amplitude of the second harmonic equals 5% of
£ 700 45 kHz o 60 kHz the amplitude of the fundamental component. The small sec-
& 610 10 ond harmonic signal riding on top of the fundamental sinu-
g 5107 o soidal wave is taken to be out of phase hf2. The three
§ 4107 Smm plots in Fig. 2 clearly illustrate that the simple power law
£ He , relationships described by E¢B) completely vanish when
a2 0 100 310'11 0 multiple frequency signals are injected at the source. In this
(@  Tumberofiterations Number of iterations case, the presence of 5% second harmonic at input changes
the fundamental input amplitude dependence of the mea-
E 10‘5: : : : : sured displacement amplitud®, at 1-m propagation dis-
o 106 D ] iteration ; tance fr_om a square-law tlo a nearly Ilnlear dependéRige
g 3 8 fogerations 2(a)]. Similarly, the behavior as a function of frequency be-
= 107 ] comes almost constant instead of quadrgfig. 2(b)], and
g 10°8 8 the distance dependence starts off at the levélobn input
s 3 g 3 and grows asymptotically toward a linear dependefigg.
g 10°[ a 3 2(c)]. This result shows that one must be very careful in
§ 1010 © . 3 determining whether or not the source is contaminated be-
£ 3 o E fore drawing conclusions about nonlinearity parameters or
A 1ML - . s " using simple perturbation relations. As also illustrated by
(b) 0 23 b ectral‘g)omponfr?t [kHz?O 100 Ten Cateet al,?® a contaminated source may have major

consequences on the interpretation of spectral ratios.

FIG. 1. Convergence of spectral contents for increasing number of iterations

(N). Second order perturbation€ u®+ uM+u®)y; f=15 kHz,c,=2000 L .
m/s, Q =60, L=1 m, 8'=—100, & =3x10% At source:A,=1.125¢<10°¢  C. Effects of the level of approximation used in the

m. (a) Overview of the convergence of all harmonics and detailed behavioerturbation model and the influence of the
of the fundamental, second, third, and fourth harmorigsTotal spectrum nonlinearity parameters

for one-step, two-step, and 100-step iterations. . . . o ) )
From a theoretical point of view, it is also instructive to

analyze the contribution of each term in E@) and in like

trum consisting of a fundamental tone and its second andhanner the contribution of each additional nonlinear coeffi-
third harmonic. This multifrequency spectrum is then used asient in the stress-strain relation. Figure 3 illustrates the cor-
input for the propagation between 50 cm and 1 m, creating &ections due to a successively increased order of approxima-
spectrum of nine components. This two-step calculatiortion in the perturbation solution for a fixed set of four
leads to significant corrections om2nd 3v and to genera- nonzero nonlinearity parameters. Note that an increase of the
tion of higher harmonics. Further corrections and additionabpproximation level in such a case systematically introduces
harmonics are obtained by increasing the number of iteraa higher-order nonlinearity parameter in the solution. For
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. E 1:’ order
107 2™ order
X 3" order
% O 4" order

10° . : : :
b —y = 23170 * x*(1.99) R= 0.99999

107 [

at 1 meter

108 |

O+
0o+ XO

x 8 3
F o) b
101 | ) ) ) ) ? ) X
0 20 40 60 80 100 120 140
Spectral Component [kHz]

[m]

Displacement Amplitude [m]

10°° 10°8 107 10°° 10°°
A1 [m] atsource

FIG. 3. Nonlinear spectrum for increased order of approximation of the
perturbation solutionf =15 kHz,c,=2000 m/s,Q, =60,L=1 m, 8'=-10,
§=3X10, 7'=2X10, & =—3x10' At source:A;=1.125<10"> m; 20
iterations.[] 1st orderu=u®+u®, + 2nd orderu=u©@+u®+u®, x

3rd  order: u=u@+u®+u@+u® O 4th order: u=u®
+uM+y@ 4+ @ y®,

contribution to all higher harmonic amplitudes that arise
when evaluating the 3rd-order approximation. As can be ob-
served in Fig. 3, the effect of adding higher-order contribu-
tions to the theoretical perturbation solution generally lifts up
the “tail” of the amplitude spectrum while causing only
I —y = 1.2717e-12 * x7(1.9983) R= 1 ] relatively small corrections to the lower harmonics. This re-
10" ‘ sult is significant because it can provide guidance as to
5 678910 20 30 40 whether or not higher nonlinearity coefficients are required
Frequency [kHz] in the theoretical simulation of a set of experimental data.
In Fig. 4 we plot a related result using the same set of
“linear” parameters as in Fig. 3. Here we show the effects
of computing the 4th-order perturbation solution
(U=u@+u®+u@+u®+u®) for a successively increas-
ing number of nonzero nonlinearity coefficients. The itera-
tion number is fixed at 20. We start with the case where all
coefficients buiB’ are zero and proceed by successively add-
ing &, 7', and & contributions. Again we observe that
higher-order nonlinearity coefficients modify the spectrum
most significantly for higher frequency components. Their
contribution can be either positive or negative. Note that the
analytical expression of the 4th-order perturbation solution

0.01 0.1 1 . . : - .
assuming th is the only nonzero nonlinear coefficient is
Propagation Distance [m)] g thap y

at 1 meter

A, m]

10°° :

[m]

1077 :.

A,M

-8
0 e y=78309e-07* xA09607) R=099373 7

FIG. 2. Functional dependencies of the displacement amplitude of the sec- — .5
ond harmonic component at 1-m propagation distance from a pure sinu- é 10 M
soidal sourcsfilled circles and a superposed 2f)-signal(open circlegin " " F O 4% order (§) 1
which A, at the source equals 5% 6f and ¢,=/2. Second-order pertur- ° 107 L ; 4% order (p.5) E
bation U=u@+u®+u@); 20 iterations;c,=2000 m/s, no attenuation; P:’ g o 3m g::: :g::)
B'=-50, 8 =—10". (a) Dependence on the fundamental amplitude at the & 1077 [ — ]
source.(f=15 kH2). (b) Dependence on the fundamental frequen@t <% E E
sourceA;=10"" m.) (c) Dependence on the propagation distalite15 - 108 [ R ® 1
kHz; At sourceA;=5.6X10"% m). g 3 & 9 3
& 107 [ + o ]
5 E m} x X fo)
instance, increasing the level from orderu=(u(®+u) to a0 . na X
order 2@=u(°)+ u®+u@)y introduces the effects of in A 0 20 40 60 8 100 120 140
the solution. On the other hand, each extra perturbation term Spectral Component [kHz]

u™ (with m>0) depends on all of the lower-order nonlin-

earity parametergthrough the weighting functions and  FIG. 4. Fourth-order perturbation solution with increasing number of non-
therefore its contribution for different frequency componenté'”ealr'tlyz'?:zrl""c;‘fe“:Sc zol‘rl’t'e‘gilggs_éoog T’fl%L ‘5600" 771 ”2) Aft Soourcf
can be either negative or positive. Note for instance the deﬁ —10, §=3%10%, 7'=0, £=0; X B'=—10, & =3x1C?, 7 =2x10,

crease of the second and third harmonic and the positive=0; O g'=-10, § =3x10, ' =2x10, & =—3x10".
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Spectral Component [kHz] . .
Propagation Distance [m]

FIG. 5. Displacement spectra for hig, =20) and low (Q, =100 linear o ) )
attenuation. Second-order perturbatian=u®+u®+u®); 50 iterations;  FIG. 6. Fundamental and harmonic displacement amplitudes as a function

f=15 KkHz, c,=2000 m/s, L=1 m, B'=—400, &=10% at source: ©f distance. Second-order perturbatiom=(u‘”+u®+u®); f=15 kHz,
A=1.125¢10 6 m. Co=2000 m/s, Q, =40, B'=-4x10°, §=-3%x10; at source:
A;=1.125<10"" m.

not equivalent to restricting Eq7) [or Eq. (10)] to the first
two terms (1=u®+u®). B’ feeds into all higher order . \ . ;@ I .
terms(u®@, u®, andu®) as well. However, due to the itera- is essential when performing theoretical simulations.

tion procedure there is not much difference in either ap- Because elastic nonlinearity results in energy .be"Tg
proach as the iteration by itself will account for the creationtranSferrecj between frequency components, the combination

of higher harmonics proportional to products of powers Ofof linear dissipation and nonlinear energy mixing introduces

the nonzero nonlinearity parameters in any possible Combit_he notion of elastically “nonlinear” attenuation as opposed

nation. Thus the fact that Figs. 3 and 4 are almost identical i 0 EIaStﬁa"%/ (Ijlnea}r tatttehnuatloln. As shown in Ft.'g' 6 ?10”'
not surprising. This result demonstrates that application opnear etiects dominate the early wave propagation whereas

the iteration procedure when using a low level perturbatio rl:()er?rcattezua:og t?gg?f‘:ﬁ; z:;[](l:(ljr_g;dkl)star:clet_s.IeBefc:useenhar-
solution of ordem with m nonzero nonlinear coefficients is IS are generated | lum by muftiple frequency

nearly equivalent to any higher-order approximation that acpouplmg, tlht(aj_loca‘l‘llhybn'(,ig VZIU? (Qlﬁ') for”thettnth htqr—
counts for the samen nonlinearity parameters. In other mr?.n'r(]: mcduf.mg inéar” and “nonfinear- atienuation,
words, if only two nonlinearity parameters have to be taken’/"IC W€ CEIINE as
into account, a second-order perturbation solution in combi- Q"M (x)- QM (x)
i : 8 X X (n) _ L NL
nation with the iteration procedure will be more than ad-  Qun (X)= 0™ (x)+ Q(x)
equate. This conclusion is extremely valuable with respect to L NL
computing theoretical simulations which can be very time (nw/2cy) Ax

consuming. T IN[AL(X—AX)/AL(X)]

harmonics. Clearly, knowledge @f, for a given experiment

with Ax small,

_ _ _ (12
D. Introduction of attenuation and the notion of a o . L. -
local hybrid Q value has a distinctive behavior as is illustrated in Fig. 7. As long

o ) ) ) as nonlinear effects dominate, the valu&Xyf is negative for

_ _Apart from obtalnlng_ a rlc_h harmonic spectrum with a e frequency components that are being gener@gdjoes
minimum number of nonlinearity parameters, another adva”asymptotically to— and jumps to+ at the distance where
tage of the iteration procedure is that it allows us to include,qnlinear effects are at their cumulative maximum. This dis-
an arbitrary dissipation function accounting for linear attenu+5nce differs for each harmonic. Beyond this critical distance
ation of frequency components at each iteration step..ln E_Oattenuation effects dominate a@}, decreases asymptoti-
(1Q) we u_sed the common exponential decay funct|0_n Mcally to the value of the linea®, characteristic for the me-
which Q, is a frequency independent measure of the lineagi,m. For the fundamental frequency component a magnified
attenuation. The attenuation coefficient=—7f/Q,Co de-  yersjon of its behavior is shown in the bottom pi@, starts
pends linearly on frequency as commonly assumed f9r7m°%ff at Q,, decreases to a minimum because of the energy
solids. However, any attenuation law can be subsht’u'ged loss to higher harmonics, and then increases again asymptoti-
including aQ, function that varies along the propagation cqly to the medium consta@, at large distances from the
path. source. The hybri) valueQy, can be translated to a hybrid

Figure 5 iIIust_rates the effect of high and I@L on .the attenuation parameter, by taking the inverse 0®,, [Fig.
spectrum for a drive frequency of 15 kHz at a fixed d|stance7(b)]_

of 1 m. Due to the introduction of attenuation effects at con-
secutive iteration steps, we observe not only dissipation i
the fundamental frequency component, but also significan
influences on the generated harmonics. For si@all we The introduction of attenuation into the model means
observe a smaller amount of energy transfer and thus fewehat dissipation of energy occurs during propagation. One

. Conservation of energy requirement
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FIG. 7. Behavior of the local hybrid attenuatiffig. (12)] (a) in terms ofQ,
(b) in terms of a. Second-order perturbation€ u®@+u®+u®); f=15
kHz, c,=2000 m/s, Q =40, B'=—-4x10°, &=-3x10". At source:

A;=1.125<10"" m.

can ask the question whether this perturbation approach a
counts at all for energy conservation in the absence of atten

ation, i.e.:

+ oo

>0

n=-—ow

EO:

H

The Hybrid a-value: a

Propagation Distance [m]

0.03

0.028 |

0.026

0.024

0022

0.02

?

® o, for & (magnified)

0.5
Propagation Distance [m]

+ oo

1

Va(0)P= 3 [Va(L)J*=Ey.
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FIG. 8. Relative errot%) of the input—output energy balance as a function

of the number of iterations in the absence of attenuation. Second-order per-

turbation O=u@+u®+u®); f=15 kHz, c,=2000 m/s, L=1 m,

B =—4x10°, §'=—3%X10"; At source:A;=1.125x10 7" m.

0 20

Figure 8 provides an answer to this question. The more it-

erations, the more accurately energy conservation is satisfied.
Using only a single step in the calculation, the excess energy
|(EL—Ep)/Ep| is about 16%. The energy excess decreases
monotonically as the number of iterations is increased. A

two-step calculation cuts it to 6% and at 100 iterations the

error is reduced to 0.01%.

F. Some applications

We emphasize that the theoretical wave propagation
model presented here can be applied to any frequency and
displacement range. Simulations can extend from ultrasonic
acoustic microscopy, over NDE material research in PZT
samples on microscales, to ultrasonic MHz-wave propaga-
tion in fluids and high-intensity low-frequency seismic
waves(Hz range in Earth materials over several thousands
of kilometers. Characterization and classification of the de-
gree of nonlinearity for fluids and solids can lead to accurate
information concerning consolidation and saturation condi-
tions within the medium as well as predictions about symp-
toms of fatigue damage. The more compliant features that
exist in a materia{imicrocracks, grain boundaries, and jojnts
the higher the nonlinear response of the material will be.
Because experiments performed by our group indicate that
Earth materials are highly nonline¥r!”*®we believe that
considerable amounts of energy are transferred from the
source frequency spectrum to higher and lower frequencies
during seismic events. Recently this hypothesis has been
confirmed by observations of Beresnev and \ieAnalysis
of detected spectra at different locations could be used to
more accurately model explosion and earthquake sources.

To date, we understand much in terms of basic nonlinear
phenomena. Various theoretical approaches which are fairly
sophisticated have also been developed!®?°However,
there have been no real breakthroughs in nonlinear acoustic
diagnostic methods for Earth materials because the science
f nonlinear elasticity has just arrived at the point where it is
now ready to address practical issues. For example, in anal-
ogy with ocean acoustic tomograpfiy*>the construction of
a parametric array in the Earth may signify a major innova-
tion for seismology. A parametric array is created when two
collimated, high strain amplitude sound waves of different
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IlI. CONCLUSION

107 .

g From Green’s function theory and perturbation methods
a general expression was derived for describing the nonlinear
5 interaction of frequency components in arbitrary pulsed elas-
tic waves along their propagation path in an infinite medium.
Elastic nonlinearity is inserted into the wave equation by
i, assuming a polynomial expansion of the stress-strain rela-
] tion. The expansion was carried out beyond the second non-
_ linear term to describe materials with extreme elastic nonlin-
10" , ‘ ear behavior. Dissipation can be accounted for due to an

0 20 40 80 100 iterative implementation of the general expression. The 1-D
Spectral Component [kHz] propagation model can be applied for a broad frequency and
amplitude range.

A fundamental question is however if a polynomial ex-
pansion of the stress-strain relation is a valid assumption.
Spectrum at 1 meter Hysteretic materials for instance usually have amplitude de-
10° | | pendent bi-functional and nonlinear stress-strain curves
i ] which complicate the wave propagation model tremendously
due to the presence of discontinuous coefficients and the
property of discrete memoryOur group is currently work-
ing on a model combining nonlinear wave propagation and
hysteresis effects. Already in 1988 Nazamiall° realized a
‘ il , discontinuous model was important. However, their stress
0 20 40 60 80 100 deformation model should be modified to accommodate re-

cent observations -2

Spectrum at Source

0% L

107 |

Displacement Amplitude [m]

107

10° LT

Displacement Amplitude [m]

10-10

Spectral Component [kHz]

FIG. 9. Simulation of the parametric array principle in highly nonlinear
media. Second-order perturbatioru=u®+u®+u®): 10 iterations; ACKNOWLEDGMENTS
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(but close frequencies are driven simultaneously. The Wavessupported by the Office of Basic Energy Science, Engineer-
interact nonlinearly and generate a frequency at the differl—ng and Geoscience under contract W7405-ENG-é6 with Los
ence between the two primary wave frequencies. Becausg 1 mos National Laboratory.

this low-frequency wave is nonlinearly generated inside the

medium, it does not have the unfavorable spreading proper-

ties characteristic to low-frequency beams generated by finite PPENDIX

size transducers. The difference frequenc_y §ignal is fairly |f v, (x,) denotes thenth frequency component of the
well collimated and can be used for transmission over a longarticle velocity spectrum at distangg, the distortion over

path Iength because it is less attenuated. A simulation USing distance x further a|ong the propagation path can be calcu-
the theoretical framework presented here can give a rougfyted as follows:

idea of the efficiency of difference frequency collimated O . Do . Do .

beam generation in rock-type materials where values of the ~ Vn(XoX) =V (Xo;X) + V" (Xo;X) + V" (X0;X)
nonlinearity parameters can be considerably large. An ex- 3y - 4y -

ample is g%v‘én in Fig. 9. The source is cor?’npos%d of two VR (XoiX) + Vi (X0 %), (AL)
equal amplitude frequency components having a differencwhere themth term in the perturbation solutidv{™(xo;x))
of 5 kHz. While propagating in a nonlinear and dissipativeis given by
medium, harmonics at all possible sum and difference fre- —— i
quencies are generated. However, due to the increase of afa  (X0:X)=i"Nwg X | Zf . V[n—E}“:ll,-](Xo)
tenuation with frequency, only the two source frequency v

components and the difference frequency are detected at a XV, (Xo) -V _(Xo)

distance of 1 m. As seen in this example, the amplitude of o

the 5-kHz component can be comparable with the resultant _ W neo— 2 I ]I
nonlinearly attenuated amplitudes of the former source. Ide- = @oo &y i :
ally one would use larger source frequencies to create the
parametric arraye.g., 495 and 500 kHzhowever, the itera- (A2)
tive procedure requires extensive computer memory andhe coefficientswl(m)(w;lo,l1,...,Im) satisfy following rules
CPU time which presently places limitations on the theoreti{m is the order of perturbatiorj;l,l,,...|, all are integer
cal simulation. summation indices; and is the independent variahle

+ oo
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W™ (w;lgl1,...Im)=0 for j>m (A3)
W (w;l)= 1/w

WA (319,04, ) =0 for m=0 (Ad)
W (@310,11)=8" A[0,01(w;lg,11) (A5)
W2 (@;10,11,1,)=28" A[0,1](w;lg,l1,15)+ 6" A1[0,0,01(w;lg,l1,15)

W2 (w;lg,11,12)=28" Aj[0,](w;lg,l1,15) (A6)

W (w;lg,11,15,13)=28" A0,2(w;lg,11,15,13)+ B AL 1(w;lg,l1,15,15)+38" A0,0,1](@;lg,l1.15.13)
+1' A100,0,0,0(w;lo,11,12,13),
WS (@;l0,11,12,13)=28" A[0,2)(w;ilg,l1.12,15)+ 8" AL, 1(w;lg,l1,12,15)+38" A[0,0,](w;lg.l1,12.15),
W (wil0,11,12,15)=28" Ag[0,2l(w;lg,l1,12,15)+ 8" AL, (w;lo,l1,12,15), (A7)
W (w;lg,01,12,153,010)=28" A[0,3](w;lg,l1,12,13,10)+28" A[1,2(w;l0,11.12,13,14)
+358" A[0,0,2(w;lg,l1,02,05,12)+38" A[0,1,1](w;lg,l1,12,15,14)
+47" A0,0,0,1(w;lg.11,02.05,14)+ & A[0,0,0,0,Q(w;lg,l1,15,13,14),
W (w:lg,11,02.15.12)=28" AL0,3](@:lg.l1.12.05,10)+28" AJfL2l(wilg,l1.12,05.14)
+358" AJ[0,0,2(w;l0,l1,02,05.014)+38" AJ0,1,1(w;lg.l1.12.05,14)
+47" A 0,0,0,1(w;lo,11,12,03,04),
W (w;lg,01,12,13.02)=28" A3[0,3](w;lg,l1,12,13,14)+28" As[1,2(w;l0,11.12,13,14)
+358" Aj[0,0,2(w;lg,l1,02,03.12)+38 AL0,1,1(wilg,l1.12,03,14),
W (w;lg,01,12,13.012)=28" A[0,3](w;lg,l1,02,13,14)+28" AL1,2/(w;l0,11.12,13,14), (A8)
with
AN, Nl (@ilos ol ps1ess )

~S
=N

o! Ne_ Ny [s-2 N
S SR SPR 8 1 [CTALL e

b1 KI(—2iwlc)® T, S0 o

Min{p+1-35"2n; Ng_q} Ng_q
_ b+l : cls ey 3,
=2i(wlco) s ng_; 24 e =822 +1)]90
_1=Max{p+1— 2_in—N 50

|

s=17[ N
(s,Ng) )
XCortsptn .(“"2 [2 5] oy

1 Min{p— 2. 1 i Ng_1} S—
s—1Ng_ 1)
5 c! & 1( 2 [r+zi5‘f(Ni+1)]wo)

ns,1=Max{p—EiS;12ni—N5,0} fet

-1 N
XC(SNESS) 1 ( 2 {2 I[r+E' C1Nj +1]woD] (A9)

i=1 n
and
(Nj) oy s @ (Nj) ey ) (Nj) (e .
qu (w)=i o W (@il sl gy poe -l v =i =2y ) (@1 - Wo g (@5l st =3y vy gl png =i 2o 1))
(A10)
Finally, the interaction weighting functions used in the te&¢). (10)] are defined by
m m
wm(n,|l,...,|m):20 w}m><nw0;n—21 1 ,|1,...,|m) |x|i. (A11)
i= i=
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